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Software Deployment

e Deployment of software across multiple devices
e Many interrelated, interconnected activities

e All software is unique
o Different dependencies
o Different characteristics
o Different specifications
o Deployment process must be unique

Fig. 1: Software Deployment Example
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Madeus / MAD

e Madeus

o Theoretical Model for Software Deployment
o Explicitly Defined Steps and Dependencies

e MAD
o Madeus Application Deployer
o Formal Implementation
o Python

Fig. 2: Basic Madeus Assembly



The Problem

Current process is slow

Designing an assembly in code is tedious
Complex to edit

Easier to visualize and modify with diagrams




Our Solution: Develop a GUI

Visualization

Simulation

Easier for users to edit

Decrease turnaround time on MAD Assembly development



Key Requirements

Visualize the creation of Madeus assemblies
Extensible framework that allows for future additions
Generate MAD code that represents the user’s diagram
Simulate deployment of an assembly



Architecture Overview
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Fig. 3: MVC Architecture



Architecture Overview; Controller
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Fig. 4: MVC Architecture - Controller
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Architecture Overview: View
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Fig. 5: MVC Architecture - View
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Architecture Overview: Model

MAB Data
Structures

Fig. 6: MVC Architecture - Model
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Implementation Overview

e [Model] Data Structures
o Assembly Component List
m Contains all user created components in one centralized location for [Controller] use as
well as any provided plugins.
o Connection List
m Contains all dependency connections between components.

Fig. 7: Complete Assembly Example
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Prototype Demo

e (1)-Component Creation

Fig. 8: Component Creation
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Prototype Demo Cont.

e (2)-Place Creation

Fig. 9: Place Creation
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Prototype Demo Cont.

e (3)- Transition Creation

Fig. 10: Transition Creation
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Prototype Demo Cont.

e (4)-Dependency Creation

Fig. 11: Dependency Creation
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Prototype Demo Cont.

e (5)- Connection Creation

Fig. 12: Connection Creation
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Prototype Demo Cont.

e Basic Assembly Manipulation

Fig. 13: Assembly Manipulation
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Prototype Demo Cont.

e Assembly Simulation

Fig. 14: Assembly Manipulation
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from mad import *

Prototype Demo Cont. &

class Component_2(Component):
def create(self):
. self.places = [
e Code Generation Placet,
'Place_2',
'Place_3'

self.transitions = {

'Transition_1': ('Place_1', 'Place_2', self.defaultFunction_1),
'Transition_2': ('Place_2', 'Place_3', self.defaultFunction_2)

self.dependencies = {

'Dependency_1": (DepTXEe.DATA_USE, ['Transition_1']),

'Dependency_2': (DepType.USE, ['Transition_2'])
def defaultFunction_1(self):
time.sleep(8)

def defaultFunction_2(self):
time.sleep(2)

Fig. 15: Component_2 Fig. 16: Component_2 Generated Code
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Challenges and Resolutions

e Limitations with Kivy Python framework

(@)

(@)

Switching over to Electron (Node.js and Chromium)
Electron framework behind Atom, Visual Studio Code, Slack, and Discord

e Saving and Loading of User Created Assemblies

(@)

(@)

(@)

O

Amended our Data-structure to serialize and store the Konva objects/groups
Saving will capture all objects and their attributes (size, position)

Loading will build an assembly from the serialized data-structure

User created assembly and data-structure generated assembly

e Deployment Simulation through GSAP

(@)

(@)

Simulation mode /‘Qﬁ'i} GreenSock

GSAP or Greensock Animation Platform i
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Fig. 17: Gantt Chart
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Testing Plan

Integration

Unit Testing Testing

Usability Testing

Testing of front-end
interface and back-end Tested byreal users
data structure

Individual Testing of
MAB's functions

Ensuring that key AB's UI and plugins
procedures of MAB interface correctly with 3
function correctly data structure with the UI and UX

Identify problems

Fig. 18: Testing Flowchart
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Conclusion

e The Problem

o MAD software results in good deployment performance but is tedious and complicated to
implement
o Need a way to help visualize software deployments
e Our Solution Vision
o Develop a Graphical User Interface
i. Help Visualize a Madeus Assembly
ii. Accurately Simulate Software Deployment via animation
iii.  Automate the Generation of Madeus Application Deployer Code
iv.  Allow for Saving and Loading of a user created Assembly
e OurPlan
o Testing Phase

25



Thank you!



