Team Amadeus:
MAD Assembly Builder
Design Review 3

Members:
Wyatt Evans, Kyle Krueger,
Melody Pressley, Evan Russell

Mentor:
Austin Sanders

Sponsors:
Dr. Helene Coullon & Dr. Frédéric Loulergue

Team Introductions

Wyatt Evans Kyle Krueger Melody Pressley Evan Russell

Team Leader Release Manager Document Architect Documenter

Software Deployment

e Deployment of software across multiple devices
e Many interrelated, interconnected activities

e All software is unique
o Different dependencies
o Different characteristics
o Different specifications
o Deployment process must be unique

Fig. 1: Software Deployment Example

Our Clients

NORTHERN
@@ ARIZONA

UNIVERSITY

Dr. Frédeéric Loulergue

Professor at School of Informatics
Computing and Cyber Systems

v 4

cUUa—

inventors for the digital world

Dr. Hélene Coullon

Assistant Professor at IMT Atlantique,
Inria researcher

Madeus / MAD

e Madeus

o Theoretical Model for Software Deployment
o Explicitly Defined Steps and Dependencies

e MAD
o Madeus Application Deployer
o Formal Implementation
o Python

Fig. 2: Basic Madeus Assembly

The Problem

Current process is slow

Designing an assembly in code is tedious
Complex to edit

Easier to visualize and modify with diagrams

Our Solution: Develop a GUI

Visualization

Simulation

Easier for users to edit

Decrease turnaround time on MAD Assembly development

Key Requirements

Visualize the creation of Madeus assemblies
Extensible framework that allows for future additions
Generate MAD code that represents the user’s diagram
Simulate deployment of an assembly

Architecture Overview

CLELECTRON

&

Controller

Fig. 3: MVC Architecture

Architecture Overview; Controller

<L ELECTRON

Fig. 4: MVC Architecture - Controller

10

Architecture Overview: View

R ELECTRON

Fig. 5: MVC Architecture - View

11

Architecture Overview: Model

MAB Data
Structures

Fig. 6: MVC Architecture - Model

12

Implementation Overview

e [Model] Data Structures
o Assembly Component List
m Contains all user created components in one centralized location for [Controller] use as
well as any provided plugins.
o Connection List
m Contains all dependency connections between components.

Fig. 7: Complete Assembly Example

13

Prototype Demo

e (1)-Component Creation

Fig. 8: Component Creation

14

Prototype Demo Cont.

e (2)-Place Creation

Fig. 9: Place Creation

15

Prototype Demo Cont.

e (3)- Transition Creation

Fig. 10: Transition Creation

16

Prototype Demo Cont.

e (4)-Dependency Creation

Fig. 11: Dependency Creation

17

Prototype Demo Cont.

e (5)- Connection Creation

Fig. 12: Connection Creation

18

Prototype Demo Cont.

e Basic Assembly Manipulation

Fig. 13: Assembly Manipulation

19

Prototype Demo Cont.

e Assembly Simulation

Fig. 14: Assembly Manipulation

20

from mad import *

Prototype Demo Cont. &

class Component_2(Component):
def create(self):
. self.places = [
e Code Generation Placet,
'Place_2',
'Place_3'

self.transitions = {

'Transition_1': ('Place_1', 'Place_2', self.defaultFunction_1),
'Transition_2': ('Place_2', 'Place_3', self.defaultFunction_2)

self.dependencies = {

'Dependency_1": (DepTXEe.DATA_USE, ['Transition_1']),

'Dependency_2': (DepType.USE, ['Transition_2'])
def defaultFunction_1(self):
time.sleep(8)

def defaultFunction_2(self):
time.sleep(2)

Fig. 15: Component_2 Fig. 16: Component_2 Generated Code

21

Challenges and Resolutions

e Limitations with Kivy Python framework

(@)

(@)

Switching over to Electron (Node.js and Chromium)
Electron framework behind Atom, Visual Studio Code, Slack, and Discord

e Saving and Loading of User Created Assemblies

(@)

(@)

(@)

O

Amended our Data-structure to serialize and store the Konva objects/groups
Saving will capture all objects and their attributes (size, position)

Loading will build an assembly from the serialized data-structure

User created assembly and data-structure generated assembly

e Deployment Simulation through GSAP

(@)

(@)

Simulation mode /‘Qﬁ'i} GreenSock

GSAP or Greensock Animation Platform i

22

Schedule

TuWe Th Fr Mo TuWe Th Fr
1S 16 17 18 n2nuxs

FEBRUARY 2019

Mo TuWe Th Fr
22 3 3 0

uWe Th Fr
04 05 06 07 08

Gantt Chart / Development Schedule

MARCH 2019
Mo TuWe Th Fr Mo TuWe Th Fr Mo Tu We Th Fr Mo TuWe Th Fr Mo TuWe Th Fr Mo TuWe Th Fr Mo TuWe Th Fr
2 13 18 15 wienn 2 % 2% 220 04 05 06 07 08 "o s #1920 n 2 5% 22w

Fig. 17: Gantt Chart

APRIL 2019
N WN 15 v
Mo Tu We Th Fr Mo TuWe Th Fr Mo TuWe Th Fr

o 02 0 o4 05 15 16 17 18 19

[Integration Testing

23

Testing Plan

Integration

Unit Testing Testing

Usability Testing

Testing of front-end
interface and back-end Tested byreal users
data structure

Individual Testing of
MAB's functions

Ensuring that key AB's UI and plugins
procedures of MAB interface correctly with 3
function correctly data structure with the UI and UX

Identify problems

Fig. 18: Testing Flowchart
24

Conclusion

e The Problem

o MAD software results in good deployment performance but is tedious and complicated to
implement
o Need a way to help visualize software deployments
e Our Solution Vision
o Develop a Graphical User Interface
i. Help Visualize a Madeus Assembly
ii. Accurately Simulate Software Deployment via animation
iii. Automate the Generation of Madeus Application Deployer Code
iv. Allow for Saving and Loading of a user created Assembly
e OurPlan
o Testing Phase

25

Thank you!

